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Abstract--The mass Lagrangian coordinate associated with the velocity field of the gas for a nonstationary 
drift-flux model of a gas-liquid mixture is introduced here. If the mass transfer is neglected, this results 
in a quite simple structure of the governing equations and permits to integrate one of the equations 
independently on the others. The simplified model, describing the horizontal two-phase flow for high 
Froude number is considered and some explicit solutions to this model in the mass Lagrangian coordinates 
are obtained. Copyright © 1996 Elsevier Science Ltd. 
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1. I N T R O D U C T I O N  

Two-phase flow modelling is typically based on averaging the instanteneous local equations of  
motion (Ishii 1975, Delhaye & Achard 1976, Nigmatulin 1979, Drew 1983 and others). After formal 
averaging, there remains the non-trivial task of formulating closure relations in terms of  averaged 
variables. Generally, the closure relations are specific to the structure of  the flow (bubbly flow, slug 
flow, separated flow etc.) and have to be separately supplied for each flow pattern. For  investigation 
of  unsteady phenomena in gas-liquid pipe flow Fabre et al. (1989) proposed using a simple 
one-dimensional nonstationary model consisting of two equations for mass conservation and the 
equation of  conservation of the total momentum.  These equations were supplied with an empirical 
relation between the mean gas velocity and the mean volumetric f lux- - "mean"  denotes hereinafter 
cross-section averaging. This relationship is similar to that of  Zuber & Findley (1965), Bendiksen 
(1984), Fran~a & Lahey (1992) and others. This transient drift-flux model was tested numerically 
and the results gave a satisfactory agreement with the experiments (Caussade et al. 1989, Fabre 
et al. 1995). One of  the most important  properties of  this model is that it is hyperbolic in a physically 
reasonable region of parameters (Thrron 1989, Benzoni-Gavage 1991). In this paper we propose 
to use mass Lagrangian coordinates to simplify the equations of  drift-flux model. These 
coordinates have been used very often with the one-dimensional gas dynamics equations to solve 
free boundary value problems. Using mass Lagrangian coordinates the entropy equation can be 
integrated independently. However, in the case of  shocks, this integration is invalid because the 
energy equation is not equivalent to the entropy equation through the shock: the entropy increases 
across the shock, whereas the energy is conserved. We will prove here that this procedure is correct 
for the drift-flux model, if we introduce the mass Lagrangian coordinates associated with the gas 
velocity. The drift-flux model is described in section 2. In section 3 the mass Lagrangian 
coordinates are introduced and the model is rewritten in an equivalent form. A simplified model 
describing non-stationary gas-liquid flow in horizontal pipe for high Froude number is formulated 
in section 4. Explicit solutions of  the simplified model are presented in section 5. 

tPermanent address: Lavrentyev Institute of Hydrodynamics, 630090 Novosibirsk, Russia. 
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2. G O V E R N I N G  E Q U A T I O N S  

A simple model describing the flow of the gas-liquid mixture in an inclined pipe consists of two 
equations of  mass conservation and the equation of the total momentum: 

(PLEL)t q- (JOLELUL) x = /'hL, [1] 

(P~EG), + (PGEGUG)x = rhc, [2] 

(pLEL uL + pCEGUG), + (pLEL u[ + pOEaU~ + p L  = pM --g sin0 ----~ UMlUMI • [3] 

Here t is the time; x is the space coordinate along the pipe; p, E, u and m are the phase density, 
the mean void fraction, the mean velocity and the mass by unit of volume entering into the phase 
across the interface, respectively. Index L is refered to the liquid and index G to the gas. The void 
fractions satisfy the geometric relation E~ + E L = 1, and the mass fluxes the mass conservation 
rhG + the = 0. D is the diameter of the p ipe ; f  is the friction coefficient; g is the gravity; 0 is the angle 
of the inclination of the pipe. We define also the mean density and mean velocity of the mixture: 

PM = PGEG q- PEEL, U M = b/GE G -1- ULE L. [4] 

The system is closed if we add constitutive laws 

uG = Co UM + U~. [5] 

P = P c r c  T, Pc = const. [6] 

Equation [5] has a broad validity since it has been used with a similar form for both bubbly flow 
and slug flow, and it is well established for a wide range of parameters (Zuber & Findlay 1965, 
Bendiksen 1984). The following two typical sets of  values of co and u~ are well accepted for slug 
flow (Bendiksen 1984): 

Co = 1.05 + 0.15 sin z 0, [7] 

lUMI 
uo~ = (gD)~/2(0.35 sin 0 + 0.54 cos 0) for (gD)l/~---- 5 < 3.5 

o r  

lUMI 
Co = 1.2, u~ = (gD)b20.35 sin 0 for (gD),/i> 3.5. 

In [6] rc is the constant of the perfect gas, T is the temperature of the gas. We shall assume also 
that the temperature is constant. Isothermal assumption implies that both phases are in the thermal 
equilibrium, the liquid imposing its temperature to the gas. This simplification avoids to treat the 
equation of energy. Both the mass flux rh c and the friction factor f are unknown quantities. They 
have to be closed by physical relations. It is generally acknowledged that these quantities can 
depend on velocity, void fraction and physical properties, but not on their derivatives. Th6ron 
(1989) has proven hyperbolicity of the system [1]-[6] in the limit where the terms pcEGuc and 
pGe6u 2 in [3] are much smaller than pLELUL and PLEL u 2 ,  respectively. He found that there exists 
a critical void fraction E* = 1~Co below which the simplified system remains hyperbolic with the 
following slopes of characteristics 2i = dx/dt,  i = 1, 2, 3: 

(p  ,j2 
= u, .  + ' = " ° "  

Mathematical properties of  the system [1]-[3] were studied by Benzoni-Gavage (1991). She has 
formulated the hyperbolicity conditions and has shown (in the case of Th6ron) that the first two 
characteristic fields of the system are genuinely nonlinear in the sense of Lax, while the last one 
is a linearly degenerate field (see Lax 1957 for definitions and section 5 of this paper). In the very 
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much simplified situation where/~/L = mG = 0 , f  = 0, u~ = 0 and Co = 1, the system [1]-[3] is reduced 
to: 

where 

(EL) t "At- (ELUL) x = 0, 

(CEL) t "1- (CEL UL) x = O, 

((1 + C)EL UL) t "~ ((1 + C)EL u 2  3 I- 7~ )x = O, 

[1'] 

[2'] 

[3'1 

PG EG CEL 
c =  , ~z = r G T - -  

PL EL 1 - -  e L ' 

The system [1']-[3'] resembles the gas dynamics equations. Hence, introducing here the mass 
Lagrangian coordinate ( through the change of variables 

O x  1 O x  
~ (  V =  , - -  = U = UL, 

E L ~ t  

the system is reduced to the following: 

1I,-- U ; = 0 ,  [1"] 

c, = 0, [2"] 

((1 + c ) u ) ,  + ~z~ = 0. [3"] 

The system [1"]-[3"] is equivalent to the system [1]-[3] not only for continuous solutions, but also 
for the shocks. Furthermore, it has some advantages. First, it is simpler. Second, the equation [2"] 
can be integrated independently on [1"], [3"] and this greatly simplifies the numerical procedure. 
Unfortunately, the system [I']-[Y] is never used in practice because, typically, u+ and Co- 1 are 
not equal to zero simultaneously. Further, we introduce Lagrangian coordinates for the system 
[1]-[3] in the general situation and consider corresponding physically relevant simplified models and 
their explicit solutions. 

3. L A G R A N G I A N  C O O R D I N A T E S  

Recalling [5] and the definition of the mean velocity u M [4], we obtain 

U M + (1 - ¢*) (UG -- U•) = E*(UG -- U+), 

with the definitions of critical phase fractions 

1 C o -  1 
E * = - - ,  E*= 1>0, ¢ * + E ~ = l .  

CO CO 

ELUL (1 - E~)u+  
uG = - -  + [ 8 ]  

E L - - E  ~ E L - - E  ~ ' 

[9] 

It follows from [8] that 

[10] 

CLUL = (EL - -  E~)Ua - -  ( I  - -  C* )# , , .  [I l]  

Substituting [II] into [I] and taking into account that #L and #~ are constant, we get 

(PL (EL - -  E ~*)), + (PL (EL - -  E ) ) u o ) x  = mL" [12] 

We introduce now the "pseudo density" P (see the definition [4] of the average density RM): 

p = pL(£L - -  E~)  + pGEG ~ PM - -  E*pL  [13] 

and the "pseudo mass concentration" c L of the liquid 

pL(EL- -  E*)  CL = [14] 
P 
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The "pseudo density" p and the "pseudo mass concentration" c L are different from the mixture 
density PM and the liquid mass concentration ELPL/PM. However, in some sense they are similar: 
as PM varies between PG and PL, and eLPL/PM between 0 and 1, p/(1 - ¢ ~ )  and CL do the same if 
and only if eL varies between e* and 1. In the following, we consider only this case. In fact, the 
opposite case eL < e t corresponds more or less to the annular flow pattern when the drift-flux 
model is not applicable. Moreover, CL is no longer positive and p can be negative. The system [1]-[3] 
with the conditions [5]-[6] taken into account is equivalent to 

(pCL), + (pCLU~)x = mL, [15] 

(P ), + (PUG )x = 0, [16] 

(pUG)t-I-(pu2Gq'-p-~-PLeLU2--pL(eL--g*)U~)x=PM --gsinO---~umlUMI • [17] 

When rh L = 0 it follows from [15], [16] that 

(cL), + uc(cL)x = O, 

i.e. CL is a Riemann invariant (see Lax 1957 for definitions). This fact was discovered earlier by 
Fabre et al. (1990) and further by Benzoni-Gavage (1991) in different variables. It is quite easy to 
express the pressure p in terms of CL and p. Indeed, it follows from [6], [13] that 

P = PL (eL - -  e ~ )  4 PeG • 
r G T 

Dividing this identity by p and recalling the definition [14] of CL we obtain 

rG T (1 - -  CL) p [18] 
P -  1 -  e* 1 CLp 

pL(1 --e~) 

NOW, we can introduce the Lagrangian coordinate ~ instead of x, where x = x (t, ¢) is defined from 
the solution of the Cauchy problem: 

dx 
dt uG(t, X), x(O, 4) ~. 

For any function F(t, x)  we define if(t, ¢ ) =  F(t, x(t, 4)). Then, for F = p the equation [16] is 
reduced to 

~ x  
f i(t ,  ~) ~-~ = fi(O, 4) .  

If  we introduce the mass Lagrangian coordinate 

q = f~ fi(0, 4) d~, 

we transform [19] to the following form: 

ax 1 
- -  ~ - - - / ) ,  13 2 -  2 . 
aq p 

Hence, taking into account [19'], we obtain from [15]-[17] 

(eL), = mL ~, 

~ , -  (ac )q  = 0, 

(tTG), "+- ~'+'PL~L(~2--~2)'+'pLe~a2)q~-~Mg(--g sin0----~t~MIffMI ). 

[191 

[19'] 

[20] 

[21] 

[22] 
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The system [l 8], [20]-[22] is equivalent to the system [15]-[17] even for shocks. Typically,/~L ~ ]A/~L, 

where/~ is a small parameter, and _~r L is a bounded function. This means that the system [20]-[22] 
is decoupled for the numerical procedure: thus for explicit schemes the Courant-Friedrichs-Lewy 
condition needs to be used only for the subsystem [21]-[22]. From now, we will drop the tilde over 
the dependent variables. 

4. S I M P L I F I E D  E Q U A T I O N S  

We consider here a practically important case (see [7]) when 

E* :~ 0, uoo = 0, 

which corresponds to a motion of  a two-phase mixture in a horizontal pipe (0 = 0) at high Froude 
number; it is typically used for slug flow (see survey by Fabre & Lin6 1992). It follows from [8] 
that 

C L ( U L -  UG) = --UGE ~ - -  uo~(1 --E*), 

CL(UL - -  UG) = UG (2EL -- E*) -- U~(1 -- E*). 

Combining the formulae above, leads to 

£L(U [ __ U2G) = _ _ Z  (UGE~. "4- u~(1 - E*))(Uc(2EL -- E*) -- U~(1 -- e~)). [23] 
EL 

If  u® = 0 then [23] implies that 

£L (U 2 --  U 2 )  : -- 2u2 E * + U2(C~)2/EL . [24] 

Taking into account [24], we get from [18], [20]-[22] that 

(CL) t = rhL/) , 

D t - -  (U G)q = 0, 

(UG) t q- (P(CL, V, UG))q 

where the modified pressure P is defined by 

P(CL, V, UG) = p(CL, V) 

[25] 

[26] 

2f 
= - PM V ~ UM lUM l, [27]  

CL U2 rG T 1 -- CE 
- -  , p(CL, V) = - -  [28] 

CL 1 - -  C ~ C L 
v + - -  v 

pLE~ pL(1 - - E * )  

and UM is determined by [9] with u~o = 0. If  we neglect both friction force ( f  = 0) and mass transfer 
(rh L = 0) we obtain equations similar to the one-dimensional gas dynamics equations. But in the 
present equations CL does not play the same role as the entropy in the gas dynamics equations 
because it does not increase through the shock. Moreover, the "pressure" P depends here not only 
on the "pseudo mass concentration" CL and the specific volume v, but also on the velocity uG. 
Transforming the system [25]-[27] to the matrix form 

U t + A(U)Uq --  f, 

where u = (CL, V, UG) Tr and f is the r.h.s, of  [25]-[27], we can calculate the eigenvalues of  A ( u ) :  

21 = 0 ,  

223= CE"C ++_[ dp(CL, V) CL(1--CL)U~\I/2 

" v ~CL \ av ( v +  C_~L,y) ' 
"+" pLe~  " \ PEEL,/  / 
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where 

~p(CL, V) rGT 1 --c L 
~v 

Generally, we may assume that 

I _ _ E * (  U CL ~2" 
pL(l -- c*)J  

8p(CL, V) CL(1 -- eL)U~ 
~v >>(v+ eL ~2" 

PL:] 

Hence, the system [25]-[28] is hyperbolic with the characteristics 

)'1 = 0 ,  ,~23 ~ CLUG "~-(C~P(CL'I))) I/2 
' c ~  - 8 v  " [29]  

V + - -  
PLE~ 

In the following we need also the right eigenvectors r i of A(u), corresponding to 2. i = 1, 2, 3: 

r, = l, --~CL/~--~ , 0 , rz3 = (0, l, --)~2,3) rr. [30] 

5. T H E  R I E M A N N  P R O B L E M  F O R  S I M P L I F I E D  E Q U A T I O N S  

Neglecting both frictional forces ( f  = 0) and mass transfer ( r h  L = 0), we consider the Riemann 
problem for the system [25]-[28], i.e. the Cauchy problem with the initial conditions of special form: 

~ u +, q > 0, 
U = ( u  , q > O ,  

where u = (CL, V, Uc), and u +, u-  are constant states. For calculating the solution of the Riemann 
problem we need some preliminary definitions (Lax 1957) in terms of  2k and rk, k = 1, 2, 3 (see 
[29]-[30]). The eigenvector rk(u) is called linearly degenerate, if 

rk (U)Vu 2k (U) = O, 

and genuinely nonlinear in the sense of Lax, if 

r,(u)V,2k(U) ~ O. 

Recalling [29]-[30] we get in our case: 

r2,3(u)Vu)~2,3(u ) ,~ -4- ( 

r I (u)Vu~ q (u) = 0. [31] 

2(--p~(cL,P~v(CL' V)V)) 1/2 CL ) ei(1 - cLCL)Uo [- (--Pv(CL' V))I/2 "~- \2" [32] 
¢L 

v + PLE------~L V + pLE~J 

It follows from [31] that the eigenvector r I is linearly degenerate. The sign of the expression [32] 
is mainly determined by the first and second terms, which have opposite signs. But, using [28] we 
obtain after some algebra 

p~(CL,V) 
2(--p~(CL, v)) In 

-- ( rG T (~ - cL )" ~ ' ,] 

eL (--pACL, V)) "2 
¢L V + - -  

RLEL * 
1 ( l 
CL eL 

v pL(1--E*) V pL(I - -¢*)  

c_~.L 

+ 
< 0  
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for the values v, CL such that 

eL 
0 < ¢ L < l  , V >  [33] 

pL(1 --E*)" 

It must be stressed that inequalities [33] are equivalent to the inequality 

1 > e L > E * .  

Hence, the eigenvectors r2.3 (u) are genuinely nonlinear in the sense of  Lax. The properties of  linearly 
degeneracy and genuinely nonlinearity imply a very simple structure of  the self-similar solution 
u(t, q) = u(q/t) of  the Riemann problem (Lax 1957). Indeed, for our case it is similar to the solution 
of  the Riemann problem for gas dynamics equations. However, unlike the gas dynamics case, where 
one must use the Hugoniot adiabate, the Poisson adiabate works in present case, because the 
conservation of  the "pseudo mass concentration" is the consequence of the mass conservation. To 
demonstrate an explicit solution, we consider the water hammer problem: to find the solution 
u = (CL, V, UO) in the region t > 0, q < 0 with the initial conditions 

and boundary conditions for q = 0" 

u(0, q)  = u -  

uo (t, 0) = 0. 

This problem appears when one closes very rapidly the outlet of  a pipeline which produces a shock. 
The Rankine-Hugoniot  conditions for the system [25]-[28] are 

0"[CL] = 0, 0" [/.)] + [UG] = 0, [34] 

a[uo] -- [P] = 0, [35] 

where the sign [...] denotes the jump across the shock. If a :~ 0, we get from [34]-[35] 

CL =C~, (uo--u~)2=(P-- P-) (v- - -v) .  [36] 

We shall consider in [36] the specific volume v as a given function of  the "pressure" P and 
the velocity uo for the fixed value of  c~ (equation [28]). For uo < u~ the equations [36] define, in 
the plane of  variables (P, uo), a continuous monotonic curve, passing through the state u- .  The 
intersection of  this curve with the axis uo = 0 gives the "pressure" behind the shock wave. 
The velocity of  the shock is defined from [34]-[35] 

[uo] [P] 
0 " =  

Iv] [uo]" 

6. S U M M A R Y  

(1) A mass Lagrangian coordinate associated with the velocity of  the gas is introduced for the 
drift-flux model. When we neglect both mass transfer and frictional forces, the resulting system 
is similar to the one-dimensional gas dynamics equations written in terms of  the specific volume, 
the velocity and the entropy. Note that the pressure of this "pseudo-gas" depends not only on the 
specific volume and the entropy, but also on the velocity. 

(2) We have shown that if there is no mass transfer, the equation for the "pseudo mass 
concentration" of the drift-flux model can be integrated independently in the mass Lagrangian 
coordinates, and this integration is valid even in the case of shocks. 

(3) A simplified model typically used for slug flow at high Froude number in horizontal pipelines 
is considered and the solution of  the water hammer problem to this model is obtained. 
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